1. Interior estimate

Theorem 1. Suppose that a smooth function $u: \mathbb{R} \times[0, T) \rightarrow \mathbb{R}$ satisfies $u_{t}=u_{x x}$ and $|u(x, t)| \leqslant M$ for all $(x, t) \in \mathbb{R} \times[0, T)$ and some constant $M>0$. Then, for $t>0$ we have

$$
\begin{equation*}
u_{x}^{2} \leqslant \frac{t+1}{2 t} M^{2} \tag{1}
\end{equation*}
$$

Proof. Given small $\epsilon>0$, we define a cut-off function

$$
\begin{equation*}
\eta(x, t)=\max \left\{0,1-\frac{1}{6} \epsilon\left(x^{2}+2 t\right)\right\} \tag{2}
\end{equation*}
$$

and define a test function

$$
\begin{equation*}
w(x, t)=\frac{t}{t+1} \eta^{2} u_{x}^{2}+\left(\frac{1}{2}+\epsilon\right) u^{2}-\left(\frac{1}{2}+2 \epsilon\right) M^{2}-\epsilon t \tag{3}
\end{equation*}
$$

which satisfies $w(x, 0)<0$.
We observe that w is smooth in the support $\operatorname{supp}(\eta)=\{(x, t): \eta(x, t)>0\}$. We compute

$$
\begin{equation*}
w_{t}=(t+1)^{-2} \eta^{2} u_{x}^{2}+\frac{2 t}{t+1}\left(\eta \eta_{t} u_{x}^{2}+u_{x} u_{x t} \eta^{2}\right)+(1+4 \epsilon) u u_{t}-\epsilon \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{x x}=\frac{2 t}{t+1}\left(\eta \eta_{x x} u_{x}^{2}+\eta_{x}^{2} u_{x}^{2}+2 \eta \eta_{x} u_{x} u_{x x}+u_{x} u_{x x x} \eta^{2}+u_{x x}^{2} \eta^{2}\right)+(1+4 \epsilon)\left(u u_{x x}+u_{x}^{2}\right) \tag{5}
\end{equation*}
$$

Thus, $(1+t)^{-2} \eta^{2} \leqslant 1$ and $\eta_{t}=\eta_{x x}$ yields

$$
\begin{align*}
w_{t}-w_{x x} & \leqslant-\epsilon-4 \epsilon u_{x}^{2}-\frac{2 t}{t+1}\left(\eta_{x}^{2} u_{x}^{2}+2 \eta \eta_{x} u_{x} u_{x x}+u_{x x}^{2} \eta^{2}\right) \tag{6}\\
& <-4 \epsilon u_{x}^{2}-\frac{6 t}{t+1} \eta_{x}^{2} u_{x}^{2} \leqslant-4 \epsilon u_{x}^{2}-4 \epsilon\left(\frac{1}{6} \epsilon x^{2}\right) u_{x}^{2} \tag{7}
\end{align*}
$$

Since $\frac{1}{6} \epsilon x^{2} \leqslant 1$ holds in $\operatorname{supp}(\eta), w_{t}<w_{x x}$ holds in $\operatorname{supp}(\eta)$.

Now, we claim $w \leqslant 0$. If not, there exists a space-time point $\left(x_{0}, t_{0}\right) \in \operatorname{supp}(\eta)$ with $t_{0}>0$ such that $w(x, t)<0$ holds for all $t \in\left[0, t_{0}\right)$ and $w\left(x_{0}, t_{0}\right)=0$. Then, we have a contradiction as follows.

$$
\begin{equation*}
0 \leqslant w_{t}\left(x_{0}, t_{0}\right)<w_{x x}\left(x_{0}, t_{0}\right) \leqslant 0 \tag{8}
\end{equation*}
$$

Therefore, we have $w \leqslant 0$ in $\operatorname{supp}(\eta)$, namely

$$
\begin{equation*}
\frac{t}{t+1}\left[1-\frac{1}{6} \epsilon\left(x^{2}+2 t\right)\right]^{2} u_{x}^{2}+\underset{1}{\left(\frac{1}{2}+\epsilon\right) u^{2}-\left(\frac{1}{2}+2 \epsilon\right) M^{2}-\epsilon t \leqslant 0} \tag{9}
\end{equation*}
$$

holds if $x^{2}+2 t \leqslant(6 \epsilon)^{-1}$. By passing $\epsilon \rightarrow 0$, we have

$$
\begin{equation*}
\frac{t}{t+1} u_{x}^{2} \leqslant \frac{1}{2}\left(M^{2}-u^{2}\right) \leqslant \frac{1}{2} M^{2} \tag{10}
\end{equation*}
$$

for all $(x, t) \in \mathbb{R} \times[0, T)$.

2. BARRIER

Theorem 2. Let Ω be a bounded convex open set of \mathbb{R}^{2}. Suppose that a smooth function u satisfies $u_{t}=\Delta u$ in \bar{Q}_{T} where $Q_{T}=\Omega \times[0, T), u(x, 0)=g(x)$ for $x \in \bar{\Omega}$ where $g: \bar{\Omega} \rightarrow \mathbb{R}$ is smooth, and $u(\sigma, t)=0$ for $\sigma \in \partial \Omega$ and $t \in[0, T)$. Then, the following holds in \bar{Q}_{T}.

$$
\begin{equation*}
\|\nabla u(\vec{x}, t)\| \leqslant \max _{\vec{x} \in \bar{\Omega}}\|\nabla g(\vec{x})\| \tag{11}
\end{equation*}
$$

Proof. Suppose that $\overrightarrow{0} \in \partial \Omega$ and $v(0)=-e_{1}$. We define an upper barrier $w=K x_{1}$, where $K=$ $\max \|\nabla g\|$, and consider $v=u-w$. Since $v \leqslant 0$ holds on $\partial_{p} Q_{T}$ and $v_{t}=v_{x x}$ in \bar{Q}_{T}, the maximum principle implies $v \leqslant 0$ in \bar{Q}_{T}. Hence

$$
\begin{equation*}
u_{1}(\overrightarrow{0}, t)=\lim _{x_{1} \rightarrow 0} \frac{u\left(x_{1}, 0, t\right)-u(0,0, t)}{x_{1}} \leqslant \lim _{x_{1} \rightarrow 0} \frac{K x_{1}}{x_{1}}=K \tag{12}
\end{equation*}
$$

Similarly, we have $u_{1} \geqslant K$ by using the lower barrier $-K x_{1}$, and thus

$$
\begin{equation*}
\|\nabla u(\overrightarrow{0}, t)\|=\sqrt{\left|u_{1}(\overrightarrow{0}, t)\right|^{2}+\left|u_{2}(\overrightarrow{0}, t)\right|^{2}} \leqslant\left|u_{1}(\overrightarrow{0}, t)\right| \leqslant K \tag{13}
\end{equation*}
$$

By rotating and shifting the coordinate system, we have $\|\nabla u(\sigma, t)\| \leqslant K$ for each $\sigma \in \partial \Omega$. Since $\|\nabla u(\vec{x}, 0)\|=\|\nabla g(\vec{x})\| \leqslant K$,

$$
\begin{equation*}
\|\nabla u\| \leqslant K=\max \|g(x, 0)\| \tag{14}
\end{equation*}
$$

holds on $\partial_{p} Q_{T}$.
Next, we define $v=\|\nabla u\|^{2}-K^{2}$, which satisfies $v \leqslant 0$ on $\partial_{p} Q_{T}$. Moreover,

$$
\begin{equation*}
\Delta v=2\left\|\nabla^{2} u\right\|^{2}+2\langle\nabla u, \nabla \Delta u\rangle \geqslant 2\left\langle\nabla u, \nabla u_{t}\right\rangle=v_{t} \tag{15}
\end{equation*}
$$

where $\left\|\nabla^{2} u\right\|$ denotes the square root norm of the matrix $\nabla^{2} u$, namely

$$
\begin{equation*}
\left\|\nabla^{2} u\right\|^{2}=\sum_{i, j} u_{i j}^{2} \tag{16}
\end{equation*}
$$

Therefore, the maximum principle implies the desired result $v \leqslant K^{2}$ in \bar{Q}_{T}.

3. Backward uniqueness

Theorem 3 (Hölder inequality). Suppose the f^{2} and g^{2} are integrable functions on $\Omega \subset \mathbb{R}^{n}$. Then, the following holds

$$
\begin{equation*}
\int_{\Omega} f(\vec{x}) g(\vec{x}) d \vec{x} \leqslant \sqrt{\int_{\Omega}|f(\vec{x})|^{2} d \vec{x}} \sqrt{\int_{\Omega}|g(\vec{x})|^{2} d \vec{x}} \tag{17}
\end{equation*}
$$

Theorem 4. Let $Q_{T}=[0, L] \times[0, T]$. u are v are solutions to the heat equation over Q_{T}. Suppose $u=v$ holds on $[0, L] \times\{T\}$ and $\{0, L\} \times[0, T]$. Then, $u=v$.

Proof. We define $w=u-v$. Then, $w=0$ on $\{0, L\} \times[0, T]$. We recall the energy

$$
\begin{equation*}
E(t)=\int_{0}^{L} w^{2}(x, t) d x . \tag{18}
\end{equation*}
$$

Then,

$$
\begin{equation*}
E^{\prime}=-2 \int_{0}^{L} w w_{x x} d x, \quad E^{\prime \prime}=4 \int_{0}^{L} w_{x x}^{2} d x \tag{19}
\end{equation*}
$$

Hence, the Hölder inequality implies

$$
\begin{equation*}
E^{\prime 2} \geqslant E E^{\prime \prime} \tag{20}
\end{equation*}
$$

On the other hand, $E^{\prime} \leqslant 0$ and $E(T)=0$ implies that there exist some $\tilde{T} \in[0, T]$ such that $E(t)>0$ for $t<\tilde{T}$ and $E(t)=0$ for $t \geqslant \tilde{T}$. If $\tilde{T}=0$ then $w=0$. Hence, we may assume $\tilde{T}>0$ towards a contradiction. Then, for $t \in[0, \tilde{T})$ we have

$$
\begin{equation*}
(\log E(t))^{\prime \prime}=E^{-2}\left(E^{\prime \prime} E-E^{\prime 2}\right) \geqslant 0 . \tag{21}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
(\log E(t))^{\prime} \geqslant(\log E(0))^{\prime} \tag{22}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\log E(t) \geqslant \log E(0)+(\log E(0))^{\prime} t . \tag{23}
\end{equation*}
$$

Passing t to \tilde{T} yields a contradiction.

$$
\begin{equation*}
-\infty=\lim _{t \rightarrow \tilde{T}} \log E(t) \geqslant \log E(0)+(\log E(0))^{\prime} \tilde{T} \geqslant-C . \tag{24}
\end{equation*}
$$

4. Li-Yau type Harnack inequaltty I

Theorem 5. $u: \mathbb{R} \times[-T, 0]$ is a positive smooth solution to the heat equation, and $u(x+L, t)=u(x, t)$ holds for some $L>0$. Then, the following holds

$$
\begin{equation*}
u_{t} \geqslant-\frac{1}{2}(t+T)^{-1} . \tag{25}
\end{equation*}
$$

In particular, if $-T=-\infty$ then $u_{t} \geqslant 0$.
Proof. Since u is positive, $v=\log u$ is a well-defined smooth function. In addition, v satisfies

$$
\begin{equation*}
v_{t}=v_{x x}+v_{x}^{2} . \tag{26}
\end{equation*}
$$

Differentiating the equation twice yields

$$
\begin{equation*}
v_{t x x}=v_{x x x x}+2 v_{x x x} v_{x}+2 v_{x x}^{2} . \tag{27}
\end{equation*}
$$

Given $\epsilon>0$, we define $w=v_{x x}+\left(\frac{1}{2}+\epsilon\right)(t+T)^{-1}$ for $t>-T$. Then, the equation above implies

$$
\begin{equation*}
w_{t}=w_{x x}+2 w_{x} v_{x}+2 v_{x x}^{2}-\left(\frac{1}{2}+\epsilon\right)(t+T)^{-2} \tag{28}
\end{equation*}
$$

We claim that $w \geqslant 0$ for all $t>-T$. Since w is periodic and $\lim _{t \rightarrow-T} w(x, t)=+\infty$ holds for all $x \in \mathbb{R}$, if $w<0$ at some point then there exists some space-time point $\left(x_{0}, t_{0}\right) \in \mathbb{R} \times(-T, 0]$ such that $w\left(x_{0}, t_{0}\right)=0$ and $w(x, t)>0$ for all $(x, t) \in \mathbb{R} \times\left(-T, t_{0}\right)$. Therefore, at the minimum point $\left(x_{0}, t_{0}\right)$, we have

$$
\begin{equation*}
0 \geqslant 2 v_{x x}^{2}\left(x_{0}, t_{0}\right)-\left(\frac{1}{2}+\epsilon\right)\left(t_{0}+T\right)^{-2} \tag{29}
\end{equation*}
$$

In addition, we have

$$
\begin{equation*}
0=w\left(x_{0}, t_{0}\right)=v_{x x}\left(x_{0}, t_{0}\right)+\left(\frac{1}{2}+\epsilon\right)\left(t_{0}+T\right)^{-1} . \tag{30}
\end{equation*}
$$

Combing them yields a contradiction.

$$
\begin{equation*}
0 \geqslant 2\left(\frac{1}{2}+\epsilon\right)^{2}\left(t_{0}+T\right)^{-2}-\left(\frac{1}{2}+\epsilon\right)\left(t_{0}+T\right)^{-2}=2 \epsilon\left(\frac{1}{2}+\epsilon\right)\left(t_{0}+T\right)^{-2}>0 . \tag{31}
\end{equation*}
$$

Namely,

$$
\begin{equation*}
v_{x x} \geqslant-\left(\frac{1}{2}+\epsilon\right)(t+T)^{-1}, \tag{32}
\end{equation*}
$$

holds for all $\epsilon>0$. Hence, passing $\epsilon \rightarrow 0$ and $\frac{u_{t}}{u}=v_{t}=v_{x x}+v_{x}^{2} \geqslant v_{x x}$ yield the desired result.

