1. INTERIOR ESTIMATE

Theorem 1. Suppose that a smooth function u : R x [0,T) — R satisfies u; = uy, and |u(x,t)| < M
forall (x,t) € R x [0,T) and some constant M > 0. Then, for t > 0 we have

wy < MR (1)

Proof. Given small € > 0, we define a cut-off function
n(x,t) = max{0,1 — %e(x2 +21)}, ()
and define a test function
w(x,t) = Z57°ul + (5 + e — (5 + 2e)M* — et, 3)

which satisfies w(x,0) < 0.

We observe that w is smooth in the support supp(n) = {(x,7) : n(x,¢) > 0}. We compute

wr = (t+ )72 7u + [i—tl(nmui + uytt?) + (1 + 4€)uu; — €. 4)
and
Wiy = ti—tl(nnmui + 2 4 2ttt + Uttty + w2 7) + (14 4€) (uitg, + u?). 3)

Thus, (1 +¢)72n* < 1 and i, = 1, yields

Wi — Wiy < —€— 461/{)% - ti—tl('liui + 2nnaustiy + uyzchQ) (6)
< —4eu — ti—tlniui < —deu’ — 4e(éex2)ui. 7

Since %.sx2 < 1 holds in supp(n7), wy < wy, holds in supp(n).

Now, we claim w < 0. If not, there exists a space-time point (xo, %) € supp(n) with 7o > 0 such

that w(x, 7) < 0 holds for all 7 € [0,7p) and w(xo,#o) = 0. Then, we have a contradiction as follows.
0 < wi(x0,10) < wix(x0,10) <O. 8)
Therefore, we have w < 0 in supp(77), namely

=7l — %e(x2 +20)%u? + (3 + €’ — (3 + 2e)M? — et <0 9)
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holds if x> 4 2t < (6¢€)~!. By passing € — 0, we have

Lk < (M —P) < AP (10)

=

forall (x,) e R x [0,T).

2. BARRIER

Theorem 2. Let Q be a bounded convex open set of R%. Suppose that a smooth function u satisfies
u; = Auin O where Qr = Q x [0,T), u(x,0) = g(x) for x € Q where g : Q — R is smooth, and
u(o,t) = 0 for o € 0Q and t € [0,T). Then, the following holds in Qr.

|Vu(x, )| < max [Vg(¥)]. (11)
XeQ

Proof. Suppose that 0 € 0Q and v(0) = —e;. We define an upper barrier w = Kx;, where K =

, and consider v = u — w. Since v < 0 holds on 0,Qr and v; = vy, in Qr, the maximum

max ||Vg
principle implies v < 0 in Q7. Hence

~ ,0,t - 0,0,I . K
w0 (©G.0) = fim 23000 —u0.0.0 Kn (12)
x1—0 X1 x—0 X1

Similarly, we have u; > K by using the lower barrier —K x;, and thus

|Vu(G, 1) = \/Iu1(6,t)|2 + lu2(0, 1) < Jur (G,1)] < K. (13)

By rotating and shifting the coordinate system, we have ||[Vu(o,t)| < K for each o € Q. Since
[Vu(%,0)] = |Ve(®)| < K,

[Vul < K = max [g(x, 0)], (14)
holds on 0, Q7.

Next, we define v = |[Vu|? — K2, which satisfies v < 0 on 0,Q7. Moreover,
Av = 2| V2ul? + 2(Vu, VAu) = 2(Vu, Vu,) = v, (15)
where | V2u| denotes the square root norm of the matrix V2u, namely

[V2ul> = > ui. (16)
i,j

Therefore, the maximum principle implies the desired result v < K2 in Q5. m|



3. BACKWARD UNIQUENESS

Theorem 3 (Holder inequality). Suppose the f> and g* are integrable functions on @ < R™. Then,
the following holds
| r@etnaz< \/ | If(f)lzdi’\/ INEERE a7
Q Q Q

Theorem 4. Let Q7 = [0,L] x [0,T]. u are v are solutions to the heat equation over Qr. Suppose
u=vholdson|[0,L] x {T}and {0,L} x [0,T]. Then, u = v.

Proof. We definew = u — v. Then, w = 0 on {0, L} x [0, T]. We recall the energy

L
E(t) = f w(x, 1)dx. (18)
0
Then,
L L
E = —ZJ WW,xdX, E" = 4j wixdx. (19)
0 0
Hence, the Holder inequality implies
E” > EE". (20)

On the other hand, E’ < 0 and E(T) = 0 implies that there exist some T € [0, T] such that E() > 0
fort < T and E(t) = 0 fort > T. If T = 0 then w = 0. Hence, we may assume 7 > 0 towards a

contradiction. Then, for ¢ € [0, T) we have

(log E(1))" = E"*(E"E — E™) > 0. (21)
Thus, we have
(log £(1))" = (log £(0))', (22)
and thus
log E(t) = log E(0) + (log E(0))'z. (23)

Passing 7 to T yields a contradiction.

— o = limlog E(f) = log E(0) + (log E(0))'T > —C. (24)

t—T



4. Li1-Yau TYPE HARNACK INEQUALITY I

Theorem 5. u : Rx [—T,0] is a positive smooth solution to the heat equation, and u(x+L,t) = u(x, 1)
holds for some L > 0. Then, the following holds

u = -3+ T)"" (25)
In particular, if —T = —o0 then u; = 0.
Proof. Since u is positive, v = log u is a well-defined smooth function. In addition, v satisfies
Vi = Vxx + v)zc. (26)
Differentiating the equation twice yields
Vixx = Vexxx + 2VaxxVx + 2v)26x. 27
Given € > 0, we define w = v, + (3 + €)(¢ + T) ™! for t > —T. Then, the equation above implies
Wi = Wee + 2wy, 4+ 2V — (% +e)(t+T)2 (28)

We claim that w > O for all # > —T. Since w is periodic and lim,_,_7 w(x,t) = +c0 holds for all
x € R, if w < 0 at some point then there exists some space-time point (xo, 79) € R x (=7, 0] such that
w(xo,%0) = 0 and w(x, ) > 0 for all (x,7) € R x (—T,1y). Therefore, at the minimum point (xo, f),
we have

0> 2v2(x0.t0) — (3 +€)(to + T) 2 (29)

In addition, we have

0 = w(xo,t0) = vax(x0,f0) + (3 +€)(to + T) 7" (30)
Combing them yields a contradiction.
02+t +T) - R +e)(to+T) > =2e( +€)to+T) > >0. (31)

Namely,
Ve = —(L+ )+ 1), (32)

holds for all € > 0. Hence, passing € — 0 and % =V =V + vi > vy, yield the desired result. O
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