1. INTERIOR ESTIMATE

Theorem 1. Suppose that a smooth function $u : \mathbb{R} \times [0, T) \to \mathbb{R}$ satisfies $u_t = u_{xx}$ and $|u(x, t)| \leq M$ for all $(x, t) \in \mathbb{R} \times [0, T)$ and some constant M > 0. Then, for t > 0 we have

$$u_x^2 \leqslant \frac{t+1}{2t}M^2. \tag{1}$$

Proof. Given small $\epsilon > 0$, we define a cut-off function

$$\eta(x,t) = \max\{0, 1 - \frac{1}{6}\epsilon(x^2 + 2t)\},\tag{2}$$

and define a test function

$$w(x,t) = \frac{t}{t+1}\eta^2 u_x^2 + (\frac{1}{2} + \epsilon)u^2 - (\frac{1}{2} + 2\epsilon)M^2 - \epsilon t,$$
(3)

which satisfies w(x, 0) < 0.

We observe that *w* is smooth in the support supp $(\eta) = \{(x, t) : \eta(x, t) > 0\}$. We compute

$$w_t = (t+1)^{-2} \eta^2 u_x^2 + \frac{2t}{t+1} (\eta \eta_t u_x^2 + u_x u_{xt} \eta^2) + (1+4\epsilon) u u_t - \epsilon.$$
(4)

and

$$w_{xx} = \frac{2t}{t+1} (\eta \eta_{xx} u_x^2 + \eta_x^2 u_x^2 + 2\eta \eta_x u_x u_{xx} + u_x u_{xxx} \eta^2 + u_{xx}^2 \eta^2) + (1 + 4\epsilon) (u u_{xx} + u_x^2).$$
(5)

Thus, $(1 + t)^{-2}\eta^2 \leq 1$ and $\eta_t = \eta_{xx}$ yields

$$w_t - w_{xx} \leqslant -\epsilon - 4\epsilon u_x^2 - \frac{2t}{t+1} (\eta_x^2 u_x^2 + 2\eta \eta_x u_x u_{xx} + u_{xx}^2 \eta^2)$$
(6)

$$< -4\epsilon u_x^2 - \frac{6t}{t+1}\eta_x^2 u_x^2 \leqslant -4\epsilon u_x^2 - 4\epsilon (\frac{1}{6}\epsilon x^2)u_x^2.$$
⁽⁷⁾

Since $\frac{1}{6}\epsilon x^2 \leq 1$ holds in supp (η) , $w_t < w_{xx}$ holds in supp (η) .

Now, we claim $w \le 0$. If not, there exists a space-time point $(x_0, t_0) \in \text{supp}(\eta)$ with $t_0 > 0$ such that w(x, t) < 0 holds for all $t \in [0, t_0)$ and $w(x_0, t_0) = 0$. Then, we have a contradiction as follows.

$$0 \le w_t(x_0, t_0) < w_{xx}(x_0, t_0) \le 0.$$
(8)

Therefore, we have $w \leq 0$ in supp (η) , namely

$$\frac{t}{t+1} \left[1 - \frac{1}{6} \epsilon (x^2 + 2t) \right]^2 u_x^2 + \left(\frac{1}{2} + \epsilon \right) u^2 - \left(\frac{1}{2} + 2\epsilon \right) M^2 - \epsilon t \leqslant 0 \tag{9}$$

holds if $x^2 + 2t \leq (6\epsilon)^{-1}$. By passing $\epsilon \to 0$, we have

$$\frac{t}{t+1}u_x^2 \le \frac{1}{2}(M^2 - u^2) \le \frac{1}{2}M^2$$
(10)

for all $(x, t) \in \mathbb{R} \times [0, T)$.

2. BARRIER

Theorem 2. Let Ω be a bounded convex open set of \mathbb{R}^2 . Suppose that a smooth function u satisfies $u_t = \Delta u$ in \overline{Q}_T where $Q_T = \Omega \times [0, T)$, u(x, 0) = g(x) for $x \in \overline{\Omega}$ where $g : \overline{\Omega} \to \mathbb{R}$ is smooth, and $u(\sigma, t) = 0$ for $\sigma \in \partial \Omega$ and $t \in [0, T)$. Then, the following holds in \overline{Q}_T .

$$\|\nabla u(\vec{x},t)\| \leq \max_{\vec{x}\in\overline{\Omega}} \|\nabla g(\vec{x})\|.$$
(11)

Proof. Suppose that $\vec{0} \in \partial \Omega$ and $v(0) = -e_1$. We define an upper barrier $w = Kx_1$, where $K = \max \|\nabla g\|$, and consider v = u - w. Since $v \leq 0$ holds on $\partial_p Q_T$ and $v_t = v_{xx}$ in \overline{Q}_T , the maximum principle implies $v \leq 0$ in \overline{Q}_T . Hence

$$u_1(\vec{0},t) = \lim_{x_1 \to 0} \frac{u(x_1,0,t) - u(0,0,t)}{x_1} \le \lim_{x_1 \to 0} \frac{Kx_1}{x_1} = K.$$
 (12)

Similarly, we have $u_1 \ge K$ by using the lower barrier $-Kx_1$, and thus

$$\|\nabla u(\vec{0},t)\| = \sqrt{|u_1(\vec{0},t)|^2 + |u_2(\vec{0},t)|^2} \le |u_1(\vec{0},t)| \le K.$$
(13)

By rotating and shifting the coordinate system, we have $\|\nabla u(\sigma, t)\| \leq K$ for each $\sigma \in \partial \Omega$. Since $\|\nabla u(\vec{x}, 0)\| = \|\nabla g(\vec{x})\| \leq K$,

$$\|\nabla u\| \leqslant K = \max \|g(x,0)\|,\tag{14}$$

holds on $\partial_p Q_T$.

Next, we define $v = \|\nabla u\|^2 - K^2$, which satisfies $v \leq 0$ on $\partial_p Q_T$. Moreover,

$$\Delta v = 2 \|\nabla^2 u\|^2 + 2 \langle \nabla u, \nabla \Delta u \rangle \ge 2 \langle \nabla u, \nabla u_t \rangle = v_t,$$
(15)

where $\|\nabla^2 u\|$ denotes the square root norm of the matrix $\nabla^2 u$, namely

$$\|\nabla^2 u\|^2 = \sum_{i,j} u_{ij}^2.$$
 (16)

Therefore, the maximum principle implies the desired result $v \leq K^2$ in \overline{Q}_T .

3. BACKWARD UNIQUENESS

Theorem 3 (Hölder inequality). Suppose the f^2 and g^2 are integrable functions on $\Omega \subset \mathbb{R}^n$. Then, the following holds

$$\int_{\Omega} f(\vec{x}) g(\vec{x}) d\vec{x} \leq \sqrt{\int_{\Omega} |f(\vec{x})|^2 d\vec{x}} \sqrt{\int_{\Omega} |g(\vec{x})|^2 d\vec{x}}.$$
(17)

Theorem 4. Let $Q_T = [0, L] \times [0, T]$. *u are v are solutions to the heat equation over* Q_T . Suppose u = v holds on $[0, L] \times \{T\}$ and $\{0, L\} \times [0, T]$. Then, u = v.

Proof. We define w = u - v. Then, w = 0 on $\{0, L\} \times [0, T]$. We recall the energy

$$E(t) = \int_0^L w^2(x, t) dx.$$
 (18)

Then,

$$E' = -2 \int_0^L w w_{xx} dx, \qquad \qquad E'' = 4 \int_0^L w_{xx}^2 dx. \tag{19}$$

Hence, the Hölder inequality implies

$$E^{\prime 2} \geqslant EE^{\prime\prime}.\tag{20}$$

On the other hand, $E' \leq 0$ and E(T) = 0 implies that there exist some $\tilde{T} \in [0, T]$ such that E(t) > 0for $t < \tilde{T}$ and E(t) = 0 for $t \ge \tilde{T}$. If $\tilde{T} = 0$ then w = 0. Hence, we may assume $\tilde{T} > 0$ towards a contradiction. Then, for $t \in [0, \tilde{T})$ we have

$$(\log E(t))'' = E^{-2}(E''E - E'^2) \ge 0.$$
(21)

Thus, we have

$$(\log E(t))' \ge (\log E(0))',\tag{22}$$

and thus

$$\log E(t) \ge \log E(0) + (\log E(0))'t.$$
(23)

Passing t to \tilde{T} yields a contradiction.

$$-\infty = \lim_{t \to \tilde{T}} \log E(t) \ge \log E(0) + (\log E(0))'\tilde{T} \ge -C.$$
(24)

Theorem 5. $u : \mathbb{R} \times [-T, 0]$ is a positive smooth solution to the heat equation, and u(x+L, t) = u(x, t) holds for some L > 0. Then, the following holds

$$u_t \ge -\frac{1}{2}(t+T)^{-1}.$$
(25)

In particular, if $-T = -\infty$ then $u_t \ge 0$.

Proof. Since u is positive, $v = \log u$ is a well-defined smooth function. In addition, v satisfies

$$v_t = v_{xx} + v_x^2.$$
 (26)

Differentiating the equation twice yields

$$v_{txx} = v_{xxxx} + 2v_{xxx}v_x + 2v_{xx}^2.$$
(27)

Given $\epsilon > 0$, we define $w = v_{xx} + (\frac{1}{2} + \epsilon)(t + T)^{-1}$ for t > -T. Then, the equation above implies

$$w_t = w_{xx} + 2w_x v_x + 2v_{xx}^2 - (\frac{1}{2} + \epsilon)(t+T)^{-2}.$$
(28)

We claim that $w \ge 0$ for all t > -T. Since *w* is periodic and $\lim_{t\to -T} w(x,t) = +\infty$ holds for all $x \in \mathbb{R}$, if w < 0 at some point then there exists some space-time point $(x_0, t_0) \in \mathbb{R} \times (-T, 0]$ such that $w(x_0, t_0) = 0$ and w(x, t) > 0 for all $(x, t) \in \mathbb{R} \times (-T, t_0)$. Therefore, at the minimum point (x_0, t_0) , we have

$$0 \ge 2v_{xx}^2(x_0, t_0) - (\frac{1}{2} + \epsilon)(t_0 + T)^{-2}.$$
(29)

In addition, we have

$$0 = w(x_0, t_0) = v_{xx}(x_0, t_0) + (\frac{1}{2} + \epsilon)(t_0 + T)^{-1}.$$
(30)

Combing them yields a contradiction.

$$0 \ge 2(\frac{1}{2} + \epsilon)^2 (t_0 + T)^{-2} - (\frac{1}{2} + \epsilon)(t_0 + T)^{-2} = 2\epsilon(\frac{1}{2} + \epsilon)(t_0 + T)^{-2} > 0.$$
(31)

Namely,

$$v_{xx} \ge -(\frac{1}{2} + \epsilon)(t+T)^{-1},\tag{32}$$

holds for all $\epsilon > 0$. Hence, passing $\epsilon \to 0$ and $\frac{u_t}{u} = v_t = v_{xx} + v_x^2 \ge v_{xx}$ yield the desired result. \Box