
1. Interior estimate

Theorem 1. Suppose that a smooth function u : Rˆ r0,T q Ñ R satisfies ut “ uxx and |upx, tq| ď M

for all px, tq P Rˆ r0,T q and some constant M ą 0. Then, for t ą 0 we have

u2
x ď

t`1
2t M2. (1)

Proof. Given small ε ą 0, we define a cut-off function

ηpx, tq “ maxt0, 1´ 1
6εpx

2 ` 2tqu, (2)

and define a test function

wpx, tq “ t
t`1η

2u2
x ` p

1
2 ` εqu2 ´ p 1

2 ` 2εqM2 ´ εt, (3)

which satisfies wpx, 0q ă 0.

We observe that w is smooth in the support supppηq “ tpx, tq : ηpx, tq ą 0u. We compute

wt “ pt ` 1q´2η2u2
x `

2t
t`1pηηtu2

x ` uxuxtη
2q ` p1` 4εquut ´ ε. (4)

and

wxx “
2t

t`1pηηxxu2
x ` η2

xu2
x ` 2ηηxuxuxx ` uxuxxxη

2 ` u2
xxη

2q ` p1` 4εqpuuxx ` u2
xq. (5)

Thus, p1` tq´2η2 ď 1 and ηt “ ηxx yields

wt ´ wxx ď ´ε ´ 4εu2
x ´

2t
t`1pη

2
xu2

x ` 2ηηxuxuxx ` u2
xxη

2q (6)

ă ´4εu2
x ´

6t
t`1η

2
xu2

x ď ´4εu2
x ´ 4εp 1

6εx2qu2
x. (7)

Since 1
6εx2 ď 1 holds in supppηq, wt ă wxx holds in supppηq.

Now, we claim w ď 0. If not, there exists a space-time point px0, t0q P supppηq with t0 ą 0 such

that wpx, tq ă 0 holds for all t P r0, t0q and wpx0, t0q “ 0. Then, we have a contradiction as follows.

0 ď wtpx0, t0q ă wxxpx0, t0q ď 0. (8)

Therefore, we have w ď 0 in supppηq, namely

t
t`1 r1´

1
6εpx

2 ` 2tqs2u2
x ` p

1
2 ` εqu2 ´ p 1

2 ` 2εqM2 ´ εt ď 0 (9)
1
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holds if x2 ` 2t ď p6εq´1. By passing ε Ñ 0, we have

t
t`1 u2

x ď
1
2pM

2 ´ u2q ď 1
2 M2 (10)

for all px, tq P Rˆ r0,T q.

�

2. Barrier

Theorem 2. Let Ω be a bounded convex open set of R2. Suppose that a smooth function u satisfies

ut “ ∆u in QT where QT “ Ω ˆ r0,T q, upx, 0q “ gpxq for x P Ω where g : Ω Ñ R is smooth, and

upσ, tq “ 0 for σ P BΩ and t P r0,T q. Then, the following holds in QT .

}∇up~x, tq} ď max
~xPΩ

}∇gp~xq}. (11)

Proof. Suppose that ~0 P BΩ and νp0q “ ´e1. We define an upper barrier w “ Kx1, where K “

max }∇g}, and consider v “ u ´ w. Since v ď 0 holds on BpQT and vt “ vxx in QT , the maximum

principle implies v ď 0 in QT . Hence

u1p~0, tq “ lim
x1Ñ0

upx1, 0, tq ´ up0, 0, tq
x1

ď lim
x1Ñ0

Kx1

x1
“ K. (12)

Similarly, we have u1 ě K by using the lower barrier ´Kx1, and thus

}∇up~0, tq} “
b

|u1p~0, tq|2 ` |u2p~0, tq|2 ď |u1p~0, tq| ď K. (13)

By rotating and shifting the coordinate system, we have }∇upσ, tq} ď K for each σ P BΩ. Since

}∇up~x, 0q} “ }∇gp~xq} ď K,

}∇u} ď K “ max }gpx, 0q}, (14)

holds on BpQT .

Next, we define v “ }∇u}2 ´ K2, which satisfies v ď 0 on BpQT . Moreover,

∆v “ 2}∇2u}2 ` 2x∇u,∇∆uy ě 2x∇u,∇uty “ vt, (15)

where }∇2u} denotes the square root norm of the matrix ∇2u, namely

}∇2u}2 “
ÿ

i, j

u2
i j. (16)

Therefore, the maximum principle implies the desired result v ď K2 in QT . �
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3. Backward uniqueness

Theorem 3 (Hölder inequality). Suppose the f 2 and g2 are integrable functions on Ω Ă Rn. Then,

the following holds
ż

Ω

f p~xqgp~xqd~x ď

d

ż

Ω

| f p~xq|2d~x

d

ż

Ω

|gp~xq|2d~x. (17)

Theorem 4. Let QT “ r0, Ls ˆ r0,T s. u are v are solutions to the heat equation over QT . Suppose

u “ v holds on r0, Ls ˆ tTu and t0, Lu ˆ r0,T s. Then, u “ v.

Proof. We define w “ u´ v. Then, w “ 0 on t0, Lu ˆ r0,T s. We recall the energy

Eptq “
ż L

0
w2px, tqdx. (18)

Then,

E1 “ ´2
ż L

0
wwxxdx, E2 “ 4

ż L

0
w2

xxdx. (19)

Hence, the Hölder inequality implies

E12 ě EE2. (20)

On the other hand, E1 ď 0 and EpT q “ 0 implies that there exist some T̃ P r0,T s such that Eptq ą 0

for t ă T̃ and Eptq “ 0 for t ě T̃ . If T̃ “ 0 then w “ 0. Hence, we may assume T̃ ą 0 towards a

contradiction. Then, for t P r0, T̃ q we have

plog Eptqq2 “ E´2pE2E ´ E12q ě 0. (21)

Thus, we have

plog Eptqq1 ě plog Ep0qq1, (22)

and thus

log Eptq ě log Ep0q ` plog Ep0qq1t. (23)

Passing t to T̃ yields a contradiction.

´8 “ lim
tÑT̃

log Eptq ě log Ep0q ` plog Ep0qq1T̃ ě ´C. (24)

�
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4. Li-Yau type Harnack inequality I

Theorem 5. u : Rˆr´T, 0s is a positive smooth solution to the heat equation, and upx`L, tq “ upx, tq

holds for some L ą 0. Then, the following holds

ut ě ´
1
2pt ` T q´1. (25)

In particular, if ´T “ ´8 then ut ě 0.

Proof. Since u is positive, v “ log u is a well-defined smooth function. In addition, v satisfies

vt “ vxx ` v2
x. (26)

Differentiating the equation twice yields

vtxx “ vxxxx ` 2vxxxvx ` 2v2
xx. (27)

Given ε ą 0, we define w “ vxx ` p
1
2 ` εqpt ` T q´1 for t ą ´T . Then, the equation above implies

wt “ wxx ` 2wxvx ` 2v2
xx ´ p

1
2 ` εqpt ` T q´2. (28)

We claim that w ě 0 for all t ą ´T . Since w is periodic and limtÑ´T wpx, tq “ `8 holds for all

x P R, if w ă 0 at some point then there exists some space-time point px0, t0q P Rˆ p´T, 0s such that

wpx0, t0q “ 0 and wpx, tq ą 0 for all px, tq P R ˆ p´T, t0q. Therefore, at the minimum point px0, t0q,

we have

0 ě 2v2
xxpx0, t0q ´ p 1

2 ` εqpt0 ` T q´2. (29)

In addition, we have

0 “ wpx0, t0q “ vxxpx0, t0q ` p 1
2 ` εqpt0 ` T q´1. (30)

Combing them yields a contradiction.

0 ě 2p 1
2 ` εq2pt0 ` T q´2 ´ p 1

2 ` εqpt0 ` T q´2 “ 2εp 1
2 ` εqpt0 ` T q´2 ą 0. (31)

Namely,

vxx ě ´p
1
2 ` εqpt ` T q´1, (32)

holds for all ε ą 0. Hence, passing ε Ñ 0 and ut
u “ vt “ vxx ` v2

x ě vxx yield the desired result. �
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